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1 Problem1

a). First note that divergence of a curl is zero. Thus when we integrate ~f over any closed
surface, we get ∮

f⊥dA =
∮
~f · ~dA =

∫
∇ · ~fdV = 0

Thus I choose the surface to be a box with one side (Sleft) just to the left of the plane and the
other side (Sright) just to the right of the plane (i.e. it’s a Gaussian Pillbox of infinitesimal
height). Then ∫

Sright

fr⊥dA =
∫
Sleft

fl ⊥dA

Since this is true for any box, fr⊥ = fl⊥ (i.e. f⊥ has the same value on both sides of the
plane) and therefore f⊥ is continuous across the plane. b). Similarly notice that∫

~f · ~dA =
∫
∇~a · ~dA =

∮
~a · ~dl =

∮
a||dl,

which holds for any surface and corresponding boundary. Thus we can choose the surface to
be half of the box mentioned above with the boundary on the plane. The boundary can then
be deformed (in any place) such that it is infinitesimally to the left or to the right of the

plane. Since the deformations are infinitesimal,
∫ ~f · ~dA (and therefore

∮
a||dl) is unchanged

as long as ~f is finite. Thus a|| is continuous on the surface.

2 Problem2

a). Cherenkov light is produced as long as β ≤ βn, where βn = 1/n is the speed of light in
the material. Thus, 2

3
< β ≤ 1. b). The light doesn’t exit the slab as long as the exit angle

is ≥ π
2
. Using Snell’s Law this becomes

n sinψ ≥ n2 sin
π

2
= 1,

where n2 = 1 is the index of refraction of air. Thus 2
3
≤ β ≤ 1

n cosψ
= 2√

5

1



3 Problem3

a). After going through a space of length D the slope of the ray should remain unchanged
and it’s height should be increased by Dx′. That is precisely what happends when you
multiply the column vector by M . b). Similarly, after going through a thin lenz the height
of the ray should stay the same; and it’s slope should be changed such that if it’s coming in
from infinity (i.e. x′ = 0) it converges towards the focal point and if it comes through the
focal point (i.e. x′ = x/f) it comes out parallel to the z axis. c). The effect of the converging
lenz, a drift space and a diverging lenz will be the product of three matrices

Mb(−f)Ma(δ)Mb(f) =
1− δ/f δ
−δ/f 2 1 + δ/f

(1)

where Mb(f) and Ma(D) are the matrices given in parts b) and a). We can neglect small
quatities when compared to 1. Thus the resultant matrix becomes

1 δ
−δ/f 2 1

, (2)

where the δ corresponds to roughly the length of the lenz (and can be neglected for rays

where x′δ << x). The new focal length is f2

δ
>> f .

4 Problem4

a).

(
cosψ

sinψeiα
) = (

cosψ
sinψ cosα+ i sinψ sinα

) = (
sinψ sinα
i sinψ sinα

)+(
cosψ − sinψ sinα

0
) (3)

b). No. The above equation can just as easily be written as

(
− sinψ sinα
i sinψ sinα

) + (
cosψ + sinψ sinα

0
) (4)

which has a circularly polarized piece, whose polarization is opposite to the one in part a).

5 Problem5

a). A polarizer parallel to the x axis is described by a matrix

M = (
1 0
0 0

) (5)
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Then a polarizer rotated by θ with respect to the x axis is described by a matrix Λ(θ)MΛ−1(θ),
where Λ(θ) is the rotation matrix. Then the sequence of polarizers can be described as

n∏
m=1

ΛmMΛ−m = Λn(MΛ−1)n,

where Λ rotates by π/(2n) (and consequently Λm rotates by mπ/(2n)).

Λ−1 = (
cos(π/(2n)) − sin(π/(2n))
sin(π/(2n)) cos(π/(2n))

) = (
1 −π/(2n)

π/(2n) 1
), (6)

where the small angle approximation was used. Thus

MΛ−1 = (
1 π/(2n)
0 0

) (7)

and you can verify that (MΛ−1)2 = MΛ−1. Thus (MΛ−1)n = MΛ−1, which is simply M
in the limit that n goes to infinity. Since M acting on x polarized light just gives back x
polarized light and Λn rotates it by π/2, the system turns x polarized light into y polarized
light. b). The half wave plate will not affect the component of light perpendicular to it, but
will switch the direction of the light parallel to it. From geometry we see that light will go
from having an angle of π/4 with respect to the slow axis to having an angle of 3π/4 with
respect to it. Thus it will be parallel to the y axis. c). While both apparati have the same
effect on x polarized light, the polarizers will complitely stop y polarized light, and the wave
plate will turn it into x polarized light.

6 Problem6

a). If we take a wave plate with a slow axis parallel to the y axis, then it will turn right(left)
polarized light into the light having an angle of π/4 (−π/4) with respect to the x axis.
We then use a polarizer (at an angle of π/4) to block out what was left polarized light
(which automatically leaves right polarized light untouched). Then place another quarter
wave plate (with the slow axis parallel to the x axis) to make the light circularly polarized
again. b). Imagine filming the Electric field vector as the light goes through the system and
then running the tape backwards. When seen in reverse, right hand polarization is left hand
polarization, thus the system blocks right hand polarized light and transmits the left hand
polarized light.

7 Problem7

a). For a polarizer parallel to the x axis

Mx = (
1 0
0 0

) (8)
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Thus detMx = 1 ∗ 0 − 0 ∗ 0 = 0. The polarizer rotated by angle θ is then described by the
matrix Λ(θ)MxΛ

−1(θ). Then

detM = det(Λ(θ)MxΛ
−1(θ)) = detΛ(θ) ∗ detMx ∗ detΛ−1(θ) = 0

b). Similarly
det(M †M) = detM † ∗ detM = 0.

Since detI = 1, M can not be unitary.

8 Problem8

A wave plate having arbitrary thickness and with one of it’s axes oriented parallel to the x
axis is described by

Mx = (
1 0
0 eiφ

). (9)

Similarly to problem 7, a rotated wave plate is described by M = Λ(θ)MxΛ
−1(θ). Notice

that Λ−1 = ΛT = Λ†.
a). First we show that Mx is unitary.

M †
xMx = (

1 0
0 e−iφ

) ∗ (
1 0
0 eiφ

) = I (10)

Then
M †M = ΛM †

xΛ
−1ΛMxΛ

−1 = ΛM †
xMxΛ

−1 = ΛΛ−1 = I.

b).
detM = detΛ(θ) ∗ detMx ∗ detΛ−1(θ) = detMx = eiφ

Thus |detM | = |eiφ| = (cos2 θ + sin2 θ)1/2 = 1.
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